TRANSITION FROM DROPLET FLOW TO STREAM
FLOW IN A LIQUID

V. F. Dunskii and N. V. Nikitin UDC 532.529.5/.6

The transition from droplet flow to stream flow is examined theoretically for flow of liquid
from a vertical capillary and runoff from the edge of an inclined plane under the influence
of the force of gravity, and also for spraying of a liquid from a rotating perforated drum
and a smooth disk. The formulas proposed agree satisfactorily with experiment.

In liquid atomization the dimensions of the droplets formed vary over wide ranges, but in certain
liquid fractionation processes occurring under conditions of laminar flow with low flow rates droplets of
wniform dimension are formed. Such "monodispersed" processes, significant in scientific studies, are of
importance in technology as well (formation of powders from melts, spray drying, pesticide spraying).

Monodispersed fractionation of a liquid is accomplished in outflow from orifices and capillaries,
runoff from a slit or edge, or throwoff from the edge of a rotating disk or perforated drum.

We will consider the flow of a nonwetting liquid from a vertical capillary under the effect of the
force of gravity (Fig. la). At a low column height H the liquid does not flow from the capillary; a sus-
pended drop is formed at its lower end, and the liquid weight is in equilibrium with the surface-tension
force. The equilibrium condition is

2n Ro > (4n R¥3 + = R H) pz (1)

where R is the capillary radius, p and o are the density and surface tension of the liquid, and z=g is the
acceleration of gravity,

As His increased the meniscus height h increases, then equilibrium is disrupted, and the liquid be-
gins to move. Due to the inferaction of surface tension and gravity the liquid flows in the form of discrete
identical droplets (Fig. 1b, c) whose diameter is determined by the equality of the forees:

dy = (2Ra/p2)s (2)

In order that the droplets formed be identical, the capillary radius must not exceed a critical value
Rmax, which is obtained from Eg. (1) at H=0:

Ruax = (30 /20 2) (3)

The validity of Egs. (1)-(3) and the identical nature of the drops formed may be proved by simple
experiment.

Equation (2) is valid for low liquid expenditure Q. With increase in Q the drop-formation frequency
increases and in a certain range of Q values a crisis develops ~ the process is reorganized: as Q in-
creases, together with the identical "basic™ drops there are formed in the intervals between basic drops
an increasing number of finer "satellite drops," then connection between adjacent drops ceases to be dig-
continuous, and the transition from drop formation to stream flow occurs; the liquid exits from the cap-
illary in the form of a contihuous stream.

For further increase in flow rate Q a second crisis develops — the transition from laminar to tur-
bulent flow.
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We will consider here the conditions for onset of the first
crisis, the transition from drop formation to stream flow. We
shall consider the changes which increase in liquid flow rate Q
produces in the droplet~formation process.
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At low flow rates the liquid kinetic energy need not be con-
sidered, and drop formation can be considered the result of
equality of two forces: the surface-tension force 2r R ¢ and the
gravitational force (rd®/6)p z. Equation (2) was obtained on the
assumption of equality of these forces.

For increased flow rate Q the pressure within the forming
drop produced by kinetic energy of the liquid cannot be neglected.
The force acting on the drop as a result of braking of the liquid
entering it is, on the average, equal to tR%(p u®/2), where u=Q/rR? is the mean liquid outflow velocity
from the capillary.

The balance of forces in drop formation with consideration of the effect of flow rate has the form
id 2
2R3 = 5 pr o £ (4)

whence

__ [ 12Rs 3Q2 \'a - _ pQ? s
a=(2 - ) —‘10(1 ) (5)

As is evident from Eq. (5), with growth in Q decrease in drop diameter d occurs.

With the drop-formation mechanism considered here the drop diameter cannot become less than the
capillary diameter 2R. Hence, d =2R may be taken as a limiting condition for onset of the drop-formation—
stream-flow transition crisis. From Eq. (4) at d=2R we obtain the limiting expression for critical flow

rate:
Qo = 2k (Z2) |1 — ()" (6)

, T max

where K is a coefficient considering the degree to which the real process approximates the given limit.

Another approach to determination of the critical flow rate Qg is as follows. Each drop is formed
in the course of a certain time 7, which is dependent on the drop diameter d and flow rate Q. After break-
away from the capillary the drop undergoes acceleration. This motion must occur sufficiently rapidly for
a place to be freed for the next drop being formed, i.e., over a time period T the broken-away drop must
traverse a distance S=d. If S<d, then the drops must blend into one another. The condition S=d may be
taken as a limit for the critical regime.

The formation time for a drop of diameter d is
T=nd/6Q (7)

The distance traversed by a drop in falling from a state of rest under the influence of gravity (ne-
glecting air resistance in view of the low velocity) is

S =z1/2 (8)
Taking the limiting condition S=d, we obtain from Egs. (7), (8)

0. = “Igz (_f‘j_ﬁ)'/z (9)

where d is determined from Eq. (2).
As in Eq. (6}, the coefficient K, considers the degree of approximation of the real process to the
given limit.

We will now consider the flow of a nonwetting liquid from a capillary under the influence of centrif-
ugal force. A radial orifice in the wall of a drum rotating about its own axis will act as the capillary. The
liquid is supplied to the drum center, flows along its inner surface under the action of the centrifugal force,
fills the radial orifice, and is expelled outward in the form of drops.
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TABLE 1

. Density p, | Viscosity |Surface tension o,
Liquid g/cma ng/ " g/secz
cm/sec
Water 1.00 0.8;6 1;1)2
i 1.20 0.
f r oil 0.89 194 .
’Il\'dr&résr:lrrgﬁ ' 0.870 1§g ggg
icati il 0.897 2. .
’é‘il;rcl::?nl; g 1.30 14.95 63.4
Diesel fuel 0.892 0.025 30.6

With a small quantity of liquid within the capillary, at its outer end a convex liquid meniscus is
formed. In contrast to the case considered above, with its stationary capillary, forces produced by air
friction act on this meniscus. The liquid in the meniscus must move in response to these forces. In the
first approximation we will neglect this motion. Then Egs. (2)-(9) are applicable to the rotating capillary
with z =r«?, i.e., with replacement of the gravitational acceleration g by the centrifugal acceleration rw?,
where r is the radius of the outer surface of the drum (whose wall thickness h« ), and w is the angular
velocity of its rotation. Then to determine Q. by the first method Eq. (6) remains valid, but Ryax =(3 0/
2p ra?/2 To determine Qg by the second method we use Eq. (9) in the form

Q. = 5K, (55" (10)

2

at
d={12Ra/pr e (11)

We will now turn to the formation of identical droplets with the surface well-wetted by the liquid. We
will consider the runoff of a wetting liquid from the lower edge of an inclined plane under the influence of
gravity.

If the surface is wetted by the liquid and there is no liquid supply (from the reservoir) then at the
lower edge there will be formed a stationary liquid cylinder of radius a, whose weight #a%1 p z balances
the surface-tension force 21 ¢ (I being the length of the edge).

The equilibrium condition is
natlpz {2lc (12)
whence the maximum radius of the pendant cylinder at equilibrium is
a=(20/npz) (13)
Here z =g, the acceleration of gravity.

I liquid is supplied to the plane from a reservoir the entire system goes into motion — equilibrium
is disrupted, and the excess liquid forms drops which break away from the pendant cylinder and fall
downward.

Drops form in those locations where the pendant liquid cylinder most easily loses its stability under
the action of random perturbations. These locations are spaced at a distance A, which may be approxi-
mately determined from the expression proposed in [1] for decay of a liquid cylinder:

h=9all + (450 ap o)l (14)

At each of these instability points at small flow rates drops are formed as a result of interaction of
the force of gravity (r dog/ 6) p z and the force of surface tension rd,o.

The drop diameter will be
dy == <_> (15)
where C =const and z = g.

Equation {15) is valid for small flow rates Q. With increase in Q, as in the case of a capillary, the
drop-formation frequency increases, and drop flow is replaced by stream flow.
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For the first method of determining critical liquid flow rate Qg, using the same considerations as in
the case of the capillary, we arrive at an analogous force-balanceequation for drop formation:

L_oad o Qi
2nas = 0z + P (16)

Here instead of the capillary radius R we have the radius of the pendant cylinder a, determined ap-
proximately by Eq. (11); Q;=(A/ D, Q is the liquid flow from one drop-formation point. Further evaluations
analogous to those performed above for the capillary lead to the condition d=2a, defining the transition to
stream flow. From Eq. (16) at d=2a we find the expression for critical flow rate;

0. = 48K: ()" (17

To determine Qg by the second method we use Eq. (9), taking'z=g, d=clc g)i/z, and introducing
the factor I/a '

b l gdd \\2
Q. :-}Kz T (’2—> (18)

We will now consider the drop-formation process of a wetting liquid on a rotating disk. Instead of
the lower edge of the inclined plane we consider the edge of the rotating disk, to whose center is supplied
a liquid. Instead of the force of gravity, centrifugal forces act.

If the rotating disk is wet by the liguid and there is no liquid supply to the center, then at the edge
there is formed a stationary liguid torus. The tangent forces acting on this torus produced by air resis-
tance can only produce liquid motion within the torus opposite to the direction of disk rotation, because of
the axial symmetry of the problem. In the first approximation we will neglect this motion. Then Egs. (13)-
(18) are applicable to the rotating disk with z=rw?, =271, i.e., the critical flow rate is determined by

2.7[)‘ ads \1/, (19)
— 4. S i2
Qo= 48K, ( B )
for g =(2 o/wprcuzf/z and by
n2 ro fird® \*:
0. = 5 K5 (5| (20)

at d=(g/w) (o/p r)i/z-

An experimental verification of the results obtained was performed. For this purpose the experi-
ments of [2] were used, in which critical flow rates Q, were obtained for a vertical capillary for transi-
tion from drop formation (Abtropfen) to stream flow with subsequent decay of the stream into droplets
(Zertropfen), as well as experiments in determining Q4 for a vertical capillary, for a rotating drum with
radial orifice, for a rotating disk, and for an inclined plane with horizontal lower edge.

The physical characteristics of the liquids used in the experiments are presented in Table 1.

The rotating-drum experiments (Fig. 2a) were performed with an experimental apparatus shown
schematically in Fig. 2. Into the center of drum 1 with one radial orifice 2 (or disk), rotated by electric
motor 3, a stream of liquid is supplied from injection needle 4, whose control rod is loaded by weight 5.
Using an ST-5 strobotachometer visual observations of the outflow of liquid from the capillary were made
and the critical flow rate Q4 at which drop flow was replaced by stream flow was determined.
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TABLE 2

ICapillary | Disk/ Angular
Drop Liquid radius R, |drum ra- velolcity w,

Q
generator lemn ( C#S T, sec em®/ e s
sec
Vertical Water 0.02121 — — 0.103 |0.624| 0.244
capillary 0.035t - — 0.186 | 0.532] 0.204
i 0.056t — — 0.274 | 0.7041 0.287
1 0.100 - —_ 0.720 10.467] 0.466
0.0287 —_ — 0.137 |0.527 0.251
0.0427 - — 0.210 |0.447] 0.264
Glucose 0.035 - - 0.179 10,470 0.244
solution 0.056 _ — 0.320 |0.4167 0.291
. 0.100 - — 0.656 |0.370] 0.346
Mercury 0.0085 — — 0.0147(0.504] 0.138
0.0212 — —_ 0.0444]0.3891 0.193
Lubri o] 0.3 — — 0.0894/8.370| 0.268
ubricatingoil | g 0987 {  — — 0.054 [90.312] 0.192
. 0.0427 — — 0.091 |0.293] 0.232
Glycerine 0.0427 — - 0.081 |0.210] 0.150
Diesel 0.0287 — — 0.113 |0.635] 0.304
) fuel 0.0427 — — 0.153 ]0.474] 0.380
Rotating drum | Water 0.025 2.5 157 0.105 [0.606] 0.845
Wltfh ne 0.025 3.5 73 0.080 |0.452 | 0.489
oriiice . , 0.025 5.0 73 0.086 {0,440 0.526
Inclined plane | Mineral oil — — - 2.20 |0.308] 0.216
Lubricating oil 5 =
Rotating disk Transformgr _ 3.5 627 (l)é% 8%% g%gg
ot - 3.5 314 1.00 10.206] 0.143
Lubricatingoily  __ 3.5 157 2.00 l0.272] 0.194
— 3.5 314 0.202 |0.116] 0.077

* Experiments of {2].

Rotating-disk experiments (Fig. 2b) were performed with the same experimental apparatus (Fig. 2),
but the transition from formation of "basic" drops at the disk edge (first spray mode) to throwoff of a
stream which decays into finer "secondary” drops was determined from the distribution of drop dimen-
sions; the critical flow rate Q4 was taken as that at which basic drops disappeared and only secondary
drops were formed [3].

In the inclined plane experiments the transition from drop formation to stream flow and the distance
A between adjacent drop- and stream-formation points were determined visually.

The experimental results are presented in Table 2. From the table it is evident that for the large
parameter range studied with four different methods of drop formation the valye of K;, describing the first
method of Q¢ determination, varies from 0.116 to 0.704. The mean value is K;=0.406, with mean-square
deviation o=0.148 (36.4%).

For water-drop flow from a vertical capillary a decrease in drop diameter d with increase in flow
rate Q occurred. This decrease did not continue to the limit d = 2R; transition to stream flow occurred at
d>2R(K;<1). In the case of a very viscous liquid {lubricating oil) the transition to stream flow occurred
with no noticable reduction in d.

For an increase in viscosity u from 0.01 to 14.95 g/cm - sec, i.e., a factor of 1500, the coefficient Ky
varies by a factor of 2.5. For the parameter range studied the empirical function

Ky =053 —01(2—1gmn) (21)
may be used.

In the second method of @, determination the value of K, varied from 0.077 to 0.845. The mean
value K,=0.284, ¢=0.114 (40.3%).

Thus, both methods of determining critical flow rate Q; corresponding to the transition from drop
flow to stream flow gave resulis close to experimental. The first method agrees better with available data
and is to be preferred.
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